

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC494$

SWITCHING REGULATOR CONTROL CIRCUIT

<R> DESCRIPTION

The μ PC494 is a PWM type switching regulator control circuit.

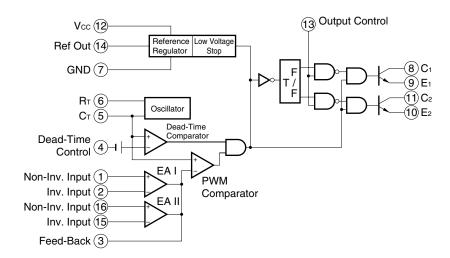
Included in this device are a 5 V voltage reference, dual error amplifiers, a variable frequency sawtooth-wave generating oscillator, a comparator for dead-time control, a flip flop, dual alternating output switches, and a buffer to output source and sink currents.

Error amplifiers have wide common mode input voltage capability, and circuits for voltage feedback and over current protection are easy to configure. The μ PC494 can be applied to all types of switching regulators, including chopper type regulators.

<R> FEATURES

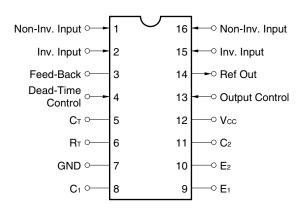
- 250 mA output buffer to output sink and source currents
- Switchable operation mode between a single-end mode and a push-pull mode
- · No double pulsing during transient condition
- Adjustable dead-time (0 to 100%)
- Internal 5 V output voltage reference circuit
- Error amplifiers with phase-compensating function
- Providing master-slave operation (synchronizing multiple ICs)
- · With malfunction prevention circuit for low level supply voltage
- · Package variations available for different applications

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

<R> ORDERING INFORMATION

Part Number	Package	Package Type
μPC494C	16-pin plastic DIP (7.62 mm (300))	plastic magazine
μPC494GS	16-pin plastic SOP (7.62 mm (300))	plastic magazine
μPC494GS-E1	16-pin plastic SOP (7.62 mm (300))	embossed taping
		Pin 1 on draw-out side
		• 2500 pcs/reel
μPC494GS-E2	16-pin plastic SOP (7.62 mm (300))	embossed taping
		Pin 1 at take-up side
		• 2500 pcs/reel
μPC494GT-A Note	16-pin plastic SOP (9.53 mm (375))	plastic magazine
μ PC494GT-A Note μ PC494GT-E1-A Note	16-pin plastic SOP (9.53 mm (375))	embossed taping
		Pin 1 on draw-out side
		• 1500 pcs/reel
μ PC494GT-E2-A Note	16-pin plastic SOP (9.53 mm (375))	embossed taping
		Pin 1 at take-up side
		• 1500 pcs/reel
μPC494GS-A Note	16-pin plastic SOP (7.62 mm (300))	plastic magazine
μ PC494GS-E1-A Note	16-pin plastic SOP (7.62 mm (300))	embossed taping
		Pin 1 on draw-out side
		• 2500 pcs/reel
μ PC494GS-E2-A $^{ extbf{Note}}$	16-pin plastic SOP (7.62 mm (300))	• embossed taping
		Pin 1 at take-up side
		• 2500 pcs/reel


Note Pb-free (This product does not contain Pb in the external electrode and other parts.)

BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

<R> • μPC494C, 494GS, 494GT-A, 494GS-A

<R> ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise noted)

Characteristics	Symbol	μPC494C	μPC494GS	μPC494GT-A	μPC494GS-A	Unit		
Supply Voltage	Vcc		-0.3 to +41					
Error Amplifier Input Voltage	VICM		-0.3 to Vcc +0.3					
Dead-time Comparator Input	V _{DTC}		-0.3 to +5.25					
Voltage								
Output Voltage	Vcer		-0.3 to +41					
Output Current	Ic		250					
Total Power Dissipation	Рт	1000	650 Note	780 Note	650 Note	mW		
Operating Ambient Temperature	TA	-20 to +85				°C		
Storage Temperature	T _{stg}	-65 to +150				°C		

Note With 5 cm x 5 cm x 1.6 mmt glass-epoxy substrate.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

RECOMMENDED OPERATING CONDITIONS

	Characteristics	Symbol	MIN.	TYP.	MAX.	Unit
	Supply Voltage	Vcc	7		40	V
	Output Voltage	Vcer	-0.3		+40	V
<r></r>	Output Current (per output stage)	Ic			200	mA
	Error Amplifier Sink Current	Іоамр			-0.3	mA
	Timing Capacitor	Ст	0.47		10000	nF
	Timing Resistance	R⊤	1.8		500	kΩ
	Oscillation Frequency	fosc	1		300	kHz
	Operating Ambient Temperature	TA	-20		+70	°C

Caution The recommended operating range may be exceeded without causing any problems provided that the absolute maximum ratings are not exceeded. However, if the device is operated in a way that exceeds the recommended operating conditions, the margin between the actual conditions of use and the absolute maximum ratings is small, and therefore thorough evaluation is necessary. The recommended operating conditions do not imply that the device can be used with all values at their maximum values.

ELECTRICAL SPECIFICATIONS (Vcc = 15 V, f = 10 kHz, -20° C \leq Ta \leq +70 $^{\circ}$ C, unless otherwise noted)

(1/2)

Block	Character	stics	Symbol	Conditions	MIN.	TYP. Note1	MAX.	(1/2) Unit
Reference	Output Voltage		VREF	I _{REF} = 1 mA, T _A = 25°C	4.75	5	5.25	V
Section	Line Regulation		REGIN	7 V ≤ Vcc ≤ 40 V,	0	8	25	mV
				IREF = 1 mA, T _A = 25°C				
	Load Regulation		REG∟	1 mA ≤ I _{REF} ≤ 10 mA,		1	15	mV
	-			T _A = 25°C				
	Temperature Coefficier	ıt	ΔVREF /ΔΤ	$-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C},$		0.01	0.03	%/°C
				I _{REF} = 1 mA				
	Short Circuit Output Cu	rrent Note2	ISHORT	V _{REF} = 0 V		50		mA
Oscillator	Frequency		fosc	$C_T = 0.01 \ \mu F$,		10		kHz
Section		Nata		$R_T = 12 \text{ k}\Omega$				
	Standard Deviation of F	requency Notes		7 V ≤ Vcc ≤ 40 V,		10		%
				T _A = 25°C, under				
				recommended operating				
				conditions of C _T and R _T				
	- 0 "			constants.		_		0/
	Frequency Change with	n Voltage		7 V ≤ Vcc ≤ 40 V,		1		%
				T _A = 25°C,				
		. T		$C_T = 0.01 \mu\text{F}, R_T = 12 \text{k}\Omega$				0/
	Frequency Change with	1 remperature		0°C ≤ T _A ≤ 70°C,		1	2	%
				$C_T = 0.01 \ \mu F,$ $R_T = 12 \ k\Omega$				
Dead- Time	Input Bias Current			0 V ≤ V _{DTC} ≤ 5.25 V		-2	-10	μA
Control	Maximum Duty Cycle (Each Output)		V _{DTC} = 0 V	45	49	-10	μA %
Section	Input Threshold Voltage		V _{TH1}	Output pulse 0% duty cycle	70	3	3.3	V
				. ,	_		0.0	-
	Input Threshold Voltage	e 2	V _{TH2}	Output pulse maximum duty	0			V
Error	Input Offact Voltage		Vio	VOAMP = 2.5 V		2	10	m\/
Amplifier 1, 2	Input Offset Voltage Input Offset Current		lio	V _{OAMP} = 2.5 V		25	250	mV nA
Section Section	Input Bias Current		IIO	V _{OAMP} = 2.5 V		0.2	1	_
Coolon	Common Mode	Low level	VICM	$7 \text{ V} \le \text{Vcc} \le 40 \text{ V}$	-0.3	0.2		μA
	Input Voltage		VICM	/ V ≤ VCC ≤ 40 V				- v
	input voltage	High level			Vcc – 2			
	Open Loop Voltage Ga	in	Av	VOAMP = 0.5 to 3.5 V,	60	80		dB
				T _A = 25°C				
	Unity Gain Bandwidth			T _A = 25°C	500	830		kHz
	Common Mode Rejection	on Ratio	CMR	Vcc = 40 V, T _A = 25°C	65	80		dB
	Output Sink Current			V _{OAMP} = 0.7 V	0.3	0.7		mA
	Output Source Current			V _{OAMP} = 3.5 V	-2	-10		mA
PWM	Input Threshold Voltage	e (Pin 3)		Output pulse 0% duty cycle,		4	4.5	V
Section				see Figure 1.				
	Input Sink Current			$V_{(Pin 3)} = 0.7 V$	0.3	0.7		mA

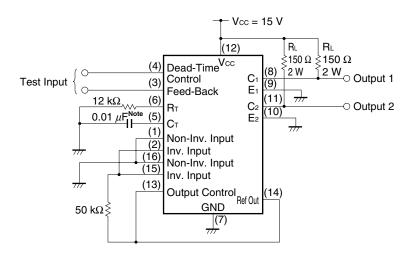
Notes 1. The TYP. values are values at T_A = 25°C, except for the characteristics of temperature.

- **2.** The short circuit output current flow must be terminated within 1 second. Repeated operations are allowed while internal heat accumulation is within a safe range.
- 3. Standard deviation is a measure of the statistical distribution about the mean as derived from the formula;

$$\sigma = \sqrt{\frac{\sum\limits_{\sum}^{N} (X_n - \overline{X})^2}{\sum\limits_{N-1}^{N-1}}}$$

Calculation expression of frequency fosc is as follows;

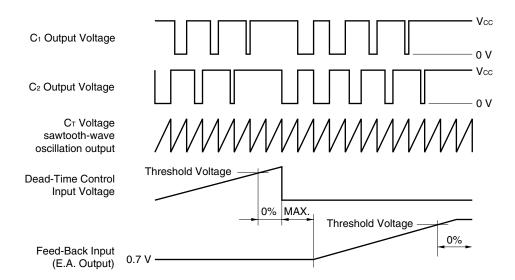
$$fosc \cong \ \, \frac{1}{0.817 \; R_T \bullet C_T + 1.42 \bullet 10^{-6}} \; (Hz) \qquad [R_T] = \Omega, \, [C_T] = F$$


(2/2)

Block	Characteristic	s	Symbol	Conditions	MIN.	TYP. Note	MAX.	Unit
Output Section	Collector Cut-off Current		ICER	VcE = 40 V, Vcc = 40 V, Common Emitter			100	μΑ
	Emitter Cut-off Current			$V_{CC} = V_C = 40 \text{ V}, V_E = 0 \text{ V},$ Emitter Follower			-100	μА
	Collector Saturation Voltage	Common Emitter	V _{CE(sat)}	Ic = 200 mA, V _E = 0 V		0.95	1.3	V
		Emitter Follower	VCE(ON)	I _E = -200 mA, V _C = 15 V		1.6	2.5	V
	Output Voltage Rise Time	Common	t _{r1}	Vcc = 15 V, R _L = 150 Ω,		100	200	ns
	Output Voltage Fall Time	Emitter	t _{f1}	Ic ≅ 100 mA, T _A = 25°C, see Figure 1 .		70	200	ns
	Output Voltage Rise Time	Emitter	t _{r2}	V _C = 15 V, R _L = 150 Ω,		100	200	ns
	Output Voltage Fall Time	Follower	t _{f2}	l _E ≅ 100 mA, T _A = 25°C, see Figure 1 .		70	200	ns
Total Device	Standby Current		ICC(S.B)	Vcc = 15 V, all other pins open.		8	12.5	mA
	Bias Current		Icc(BI)	V _(Pin 4) = 2 V, see Figure 1 .		10		mA

Note The TYP. values are values at $T_A = 25^{\circ}C$, except for the characteristics of temperature.

TEST CIRCUIT AND WAVEFORM CHARACTERISTICS

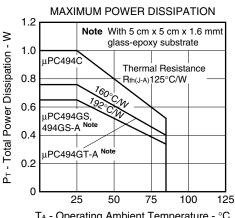

Figure 1. Test Circuit

Note Recommend film capacitor.

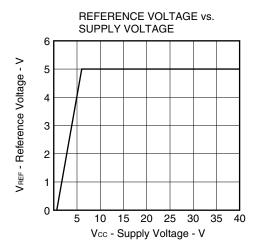
Caution When the emitter follower is output, connect C1 and C2 to Vcc and E1 and E2 to GND via RL.

Figure 2. Voltage Waveform

Connection of Output Control Pin (Pin 13)

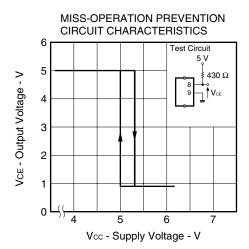

Output Control Input (Pin 13)	Operation Mode
Ref Out	push-pull
GND	Single-ended operation (common-mode output of C1, C2)

7


TYPICAL PERFORMANCE CHARACTERISTICS

(Unless otherwise specified, TA = 25°C, Vcc = 15 V, Reference)

<R>


 T_{A} - Operating Ambient Temperature - $^{\circ}\text{C}$

500 Vcc = 15 V Ycc = 15 V

 R_T - Timing Resistance - $k\Omega$

FREQUENCY vs. Rt AND Ct

REFERENCE VOLTAGE vs.
OPERATING AMBIENT TEMPERATURE

OPERATURE

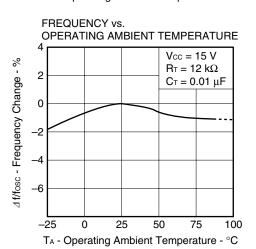
OPERATING AMBIENT TEMPERATURE

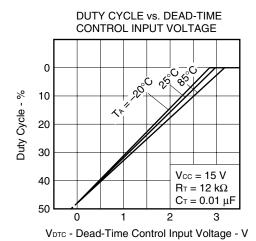
OPERATURE

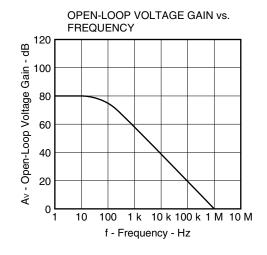
OPERATURE

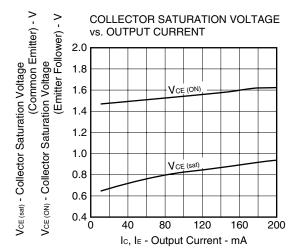
OPERATURE

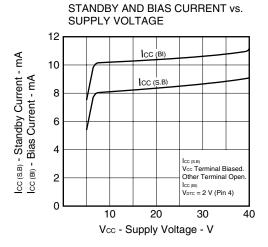
OPERATURE

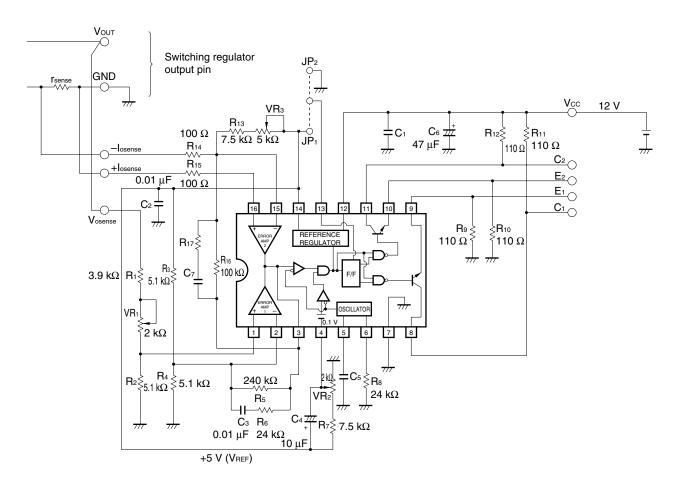

OPERATURE


OPERATURE

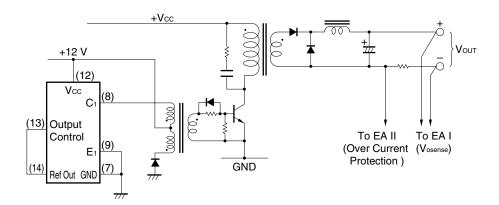

OPERATURE


OPERATURE

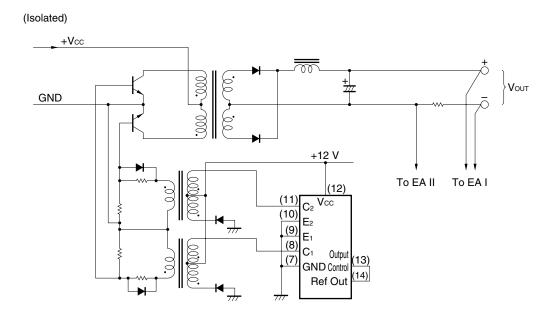

OPE



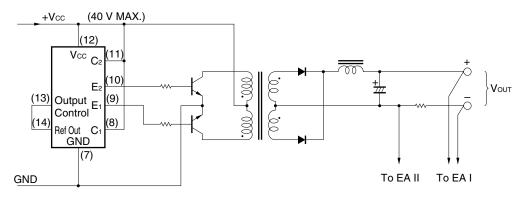
BASIC APPLICATION CIRCUIT

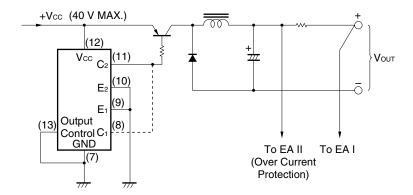

Remark fosc \cong 40 kHz, C₅ = 1000 pF (Recommend film capacitor)

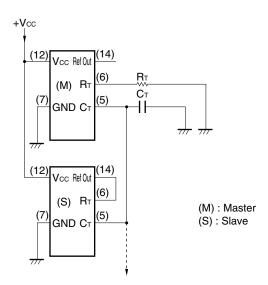
CONNECTION DIAGRAM


Operation Mode	Output Control Input (Pin 13)	Output Mode	Output Voltage Waveform
Push-pull	Ref Out (Pin 14) (JP1 Wired)	Sink (R ₉ , R ₁₀ short)	C ₁
		Source (R ₁₁ , R ₁₂ short)	E ₁
Single-ended operation	GND (Pin 7)	Sink (R ₉ , R ₁₀ short)	C ₁ , C ₂
	(JP2 Wired)	Source (R ₁₁ , R ₁₂ short)	E1, E2

TYPICAL EXAMPLE OF APPLICATION CIRCUITS


1) Forward Type

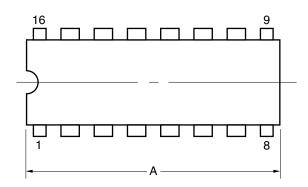

2) Push-pull Type

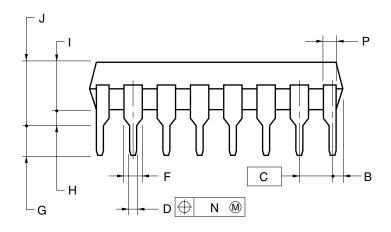

3) Step-down Chopper

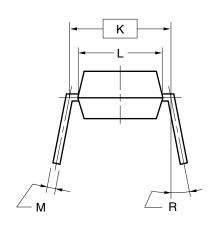
Remark The dotted line indicates the connection in case of large current.

EXAMPLE OF MASTER-SLAVE CONNECTION

To synchronize μ PC494 ICs, connect the pin 6 (R_T) of a slave IC to pin 14 (Ref Out) of the same IC, and connect both C_T pins of master and slave ICs after confirming oscillator of slave IC is stopped.



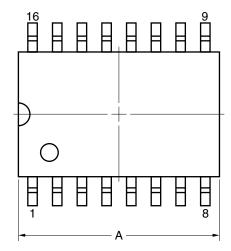

13


PACKAGE DRAWINGS (Unit: mm)

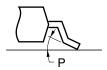
 μ PC494C

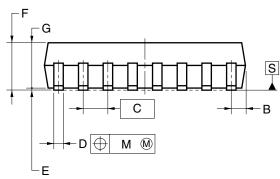
16-PIN PLASTIC DIP (7.62mm(300))

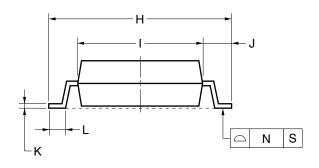
NOTES


- 1. Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS
A	20.32 MAX.
В	1.27 MAX.
С	2.54 (T.P.)
D	0.50±0.10
F	1.1 MIN.
G	3.5±0.3
Н	0.51 MIN.
I	4.31 MAX.
J	5.08 MAX.
K	7.62 (T.P.)
L	6.5
М	$0.25^{+0.10}_{-0.05}$
N	0.25
Р	1.1 MIN.
R	0~15°

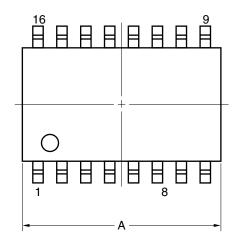

P16C-100-300B-2


<R> μ**PC494GT-A**

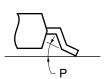

16-PIN PLASTIC SOP (9.53 mm (375))

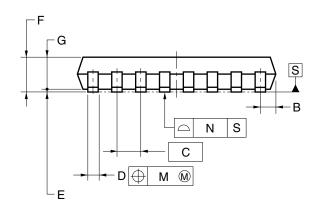
detail of lead end

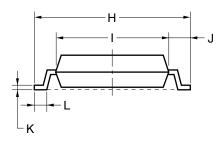
NOTE


Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	10.2±0.26
В	0.805 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
Е	0.125±0.075
F	2.9 MAX.
G	2.50±0.2
Н	10.3±0.3
ı	7.2±0.2
J	1.6±0.2
K	$0.17^{+0.08}_{-0.07}$
L	0.8±0.2
M	0.12
N	0.10
Р	3°+7°
	D16CT E0 27EB 2


P16GT-50-375B-2


μ PC494GS, 494GS-A


16-PIN PLASTIC SOP (7.62 mm (300))

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	10.2±0.2
В	0.78 MAX.
С	1.27 (T.P.)
D	$0.42^{+0.08}_{-0.07}$
E	0.1±0.1
F	1.65±0.15
G	1.55
Н	7.7±0.3
- 1	5.6±0.2
J	1.1±0.2
K	$0.22^{+0.08}_{-0.07}$
L	0.6±0.2
М	0.12
N	0.10
Р	3°+7°

P16GM-50-300B-6

<R> RECOMMENDED SOLDERING CONDITIONS

The μ PC494 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Type of Through-hole Device

 μ PC494C: 16-pin plastic DIP (7.62 mm (300))

Process	Conditions	Symbol
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less	WS60-00
(only to leads)		
Partial Heating Method	Pin temperature: 300°C or below,	P300
	Heat time: 3 seconds or less (Per each side of the device)	

Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered.

Type of Surface Mount Device

 μ PC494GS: 16-pin plastic SOP (7.62 mm (300))

Process	Conditions	Symbol
Infrared Ray Reflow	Maximum temperature (package's surface temperature): 235°C or below,	IR35-00-3
	Time at maximum temperature: 10 seconds or less,	
	Time at temperature higher than 210°C: 30 seconds or less,	
	Preheating time at 100 to 160°C: 30 to 60 seconds, Times: 3 times,	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	
Vapor Phase Soldering	Maximum temperature (package's surface temperature): 215°C or below,	VP15-00-3
	Reflow time: 25 to 40 seconds or less (at 200°C or higher),	
	Preheating time at 120 to 150°C: 30 to 60 seconds, Times: 3 times,	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less,	WS60-00-1
	Maximum number of flow processes: 1 time,	
	Preheating temperature: 120°C MAX. (Package surface temperature).	
Partial Heating Method	Pin temperature: 350°C or below,	P350
	Heat time: 3 seconds or less (Per each side of the device),	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

 μ PC494GT-A ^{Note1}: 16-pin plastic SOP (9.53 mm (375))

Process	Conditions	Symbol
Infrared Ray Reflow	Maximum temperature (package's surface temperature): 260°C or below,	IR60-207-3
	Time at maximum temperature: 10 seconds or less,	
	Time at temperature higher than 220°C: 60 seconds or less,	
	Preheating time at 160 to 180°C: 60 to 120 seconds, Times: 3 times,	
	Exposure limit: 7 days Note2 (after that, prebake at 125°C for 20 hours),	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less,	WS60-207-1
	Maximum number of flow processes: 1 time,	
	Preheating temperature: 120°C MAX. (Package surface temperature),	
	Exposure limit: 7 days Note2 (after that, prebake at 125°C for 20 hours).	
Partial Heating Method	Pin temperature: 350°C or below,	P350
	Heat time: 3 seconds or less (Per each side of the device),	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	

Notes 1. Pb-free (This product does not contain Pb in the external electrode and other parts.)

2. After opening the dry pack, store it a 25°C or less and 65% RH or less for the allowable storage period.

 μ PC494GS-A ^{Note}: 16-pin plastic SOP (7.62 mm (300))

Process	Conditions	Symbol
Infrared Ray Reflow	Maximum temperature (package's surface temperature): 260°C or below,	IR60-00-3
	Time at maximum temperature: 10 seconds or less,	
	Time at temperature higher than 220°C: 60 seconds or less,	
	Preheating time at 160 to 180°C: 60 to 120 seconds, Times: 3 times,	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	
Wave Soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or less,	WS60-00-1
	Maximum number of flow processes: 1 time,	
	Preheating temperature: 120°C MAX. (Package surface temperature).	
Partial Heating Method	Pin temperature: 350°C or below,	P350
	Heat time: 3 seconds or less (Per each side of the device),	
	Flux: Rosin flux with low chlorine (0.2 Wt% or below) recommended.	

Note Pb-free (This product does not contain Pb in the external electrode and other parts.)

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

- The information in this document is current as of August, 2008. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).